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Abstract
During hot working, alloysmay experience three kinds offlow stress behaviors, including strain
hardening, strain softening, or steadyflow, because of the competition of work hardening and thermal
softening.Modelling the flow stress behaviors plays an essential role in understanding themechanical
properties of alloys. In this paper, the variable order fractionalmodel is provided to describe theflow
stress behaviors of alloys. The variation of the fractional order between 0 and 1 can reflect the
mechanical property changing between solids andfluids. By assuming that the fractional order varies
linearly with time, the proposedmodel can describe both the strain softening and strain hardening
behaviors of alloys. Themodelfitting results are compared to the experimental data of A356 alloy for
strain softening andCu-Cr-Mg alloy for strain hardening under different temperatures and strain
rates. It is validated that the variable order fractionalmodel can accurately describe theflow stress
behaviors of alloys. Furthermore, the rule of the variable order is also discussed to analyze its overall
values and the changes before and after the yield point. It is concluded that the variation of the
fractional order can intuitively reveal the changes inmechanical properties in theflow stress behaviors
of alloys, including both strain softening and strain hardening.

1. Introduction

In the forming process, hot working has an important influence on themechanical properties of alloys.
Nowadays,finite elementmethods have been commonly used to design hot working processes and optimize
deformation parameters [1]. The reliability of simulation results significantly depends on the accuracy of the
constitutive equation for theflow stresses of alloys under hot deformation. Theflow stress behaviors of alloys
during hot working are usually complicated due to the combined effects of strain, strain rate, and the forming
temperature [2]. Generally, there are three kinds offlow stress curves, as shown infigure 1. Theflow stressmay
exhibitflowhardening, flow softening or steadyflow considering the competition of work hardening and
thermal softening [3]. After the yield point, if the effect of work hardening plays a dominant role, the flow stress
will gradually increase, which is the flowhardening behavior. If the predominant deformationmechanism is
thermal softening, the flow softeningwill appearwith decreasing flow stress after a peak stress value.Whenwork
hardening and thermal softening reach equilibrium, the stress curvewill show a steadyflow. Therefore,
constitutivemodelling for the flow stress behaviors of alloys should have the ability to describe these conditions.

Up to now, a lot of constitutivemodels have been raised for describing theflowbehaviors of alloys. Based on
the newest review studies [4, 5], the existingmodels offlow stress can be divided into threemain categories,
phenomenological, physical-based, and artificial neural network (ANN)models. Among them, the
phenomenologicalmodels are consideredmore efficient, usingmathematical functions to characterize the flow
stress based on empirical observations. For example, themost widely known Johnson-Cook (JC)model is the
polynomial function of strain, strain rate, and forming temperature [6]. Although it benefits from few
parameters and lowfitted complexity, the coupling effects of strain, strain rate, and temperature are not
considered in the JCmodel. To reflect the coupling effects, the Arrhenius equation is a practicalmethod that
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expresses theflow stress by hyperbolic law [7]. However, the accuracy of phenomenologicalmodels is currently
difficult tomeet the simulation requirements of advancedmanufacturing processes [8].

On the other hand, the physical-basedmodels account for the physical aspects of alloys, such as dislocation
dynamics, thermal activation, and so on [9]. Compared to phenomenologicalmodels, they usually require larger
amounts ofmaterial constants, which limits their applications in simulation. Lastly, the ANNmodel is an
entirely different and new approach able to describe the flow stress behaviors effectively and accurately [10]. But
it does not providemathematical formulas or physical insights into alloys. Therefore, there is still a lack of
constitutivemodels to calculate theflow stress behaviors of alloys practically and accurately, especially to
describe both strain softening and strain hardening in the same form.

In recent decades, fractional order calculus has gradually been recognized as amathematical tool that can
effectively describe complex physical phenomena [11]. Fractional order calculus is particularly suitable for
describing the intermediatemechanical properties of viscoelasticmaterials and can significantly reduce the
number ofmodel parameters [12]. Considering the viscoelastic properties of alloys, the applications of fractional
models have already been studied. For example,Mao et al [13] used themodified fractionalMaxwellmodel for
theM2052 alloy under the condition of uniaxial tensile test at constant strain rates. Fan andHuang [14]
proposed the fractional Burgersmodel to depict the creep and creep-recovery behavior of 332 aluminumalloy.
Around the beginning of the 21st century, a further generalization of the variable order fractional calculus theory
was introduced independently by several researchers [15–17]. The variable order fractional operators allow the
order to be a function of an independent variable, such as space or time, which provides a novel approach to
reflect the evolution ofmechanical properties during the deformation process. Ramirez andCoimbra [18]
explained the physical significance of the variable fractional order as the rate of disorder inside thematerial and
developed a variable order fractional constitutivemodel for viscoelasticmaterials.

The variable order fractionalmodel has shown great potential for applications inmany time-varying
physical processes [19, 20]. In our previous studies, we have successfully used the variable order fractionalmodel
to describe the strain softening [21] and strain hardening [22] behaviors. However, in theseworks, the strain
softening and strain hardening behaviors are studied separately for differentmaterials. There are still few studies
on the applications of variable order fractionalmodels for the flow stress behaviors of alloys. Therefore, the
motivation of the present study is to propose a newmethod of variable order fractionalmodel that can describe
both strain softening and strain hardening phenomena of alloys. The fractional order in the functional formwill
be used, which can ensure the rationality of the numerical range and reveal the change in the properties of the
deformation process. This studywill provide a simple and unified constitutivemodel for the flowbehaviors of
alloys.

The rest of the present paper is arranged as follows. Section 2will introduce the variable order fractional
constitutivemodel for viscoelasticmaterials, and the stress-strain relationship for data fittingwill be derived.
Then in section 3, themodelfittingmethod of the proposedmodel will be introduced. In section 4, the data
fitting procedure will be carried out. The proposedmodel will be compared to the experimental data of the flow
stress behavior of alloys, including both strain softening and strain hardening, and the rules of the parameters
and order functionswill be further analyzed. Finally, conclusions will be drawn in section 5.

Figure 1.The three types offlow stress behaviors of alloys.
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2. The variable order fractional constitutivemodel

The classical fractional order constitutivemodel for viscoelasticmaterials is proposed by Smit andVries [23],

s q e a= a at E D t 0 1 1( ) ( ) ( ) 

inwhich E(MPa) is the elasticmodulus and q(s) is the relaxation timewhich can bewritten into the ratio of
viscosity to elasticmodulus /q h= E, aD represents the fractional derivative operator of order a. It is not
difficult to imagine that when a = 0 equation (1) is equivalent toHooke’s law of ideal solid
s e e= =t E t ED t ,t

0( ) ( ) ( ) andwhen a = 1 it will beNewton’s law of viscosity /s h e h e= =t d t dt D t .t
1( ) ( ) ( )

Therefore, when the intermediate fractional order is used in equation (1), it can describe viscoelasticmaterials
between solids andfluids. In the fractional order constitutivemodel, the fractional order operator hasmany
different definitions. Themost commonones are the Riemann-Liouville definition and theCaputo definition of
fractional derivative, which are defined as
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Comparedwith the Riemann-Liouville definition, the Caputo definition requires less involved treatments of the
initial conditions and ismore suitable for engineering applications.

Based on the fractional order constitutivemodel, considering the reality that themechanical response of
viscoelasticmaterials is continuously changingwith the deformation process, Samko andRoss [24] further
changed the order in the fractional viscoelasticmodel into the formof time function.

s q e= a at E D t 5t t( ) ( ) ( )( ) ( )

Thus, the variable order fractional viscoelasticmodel can effectively describe the variation ofmechanical
properties between solids andfluids during deformation, as shown infigure 2.

The current definitions of variable order fractional operators are usually derived from the definitions of
constant order fractional operators. Coimbra [17] proposed a variable order fractional operator by taking the
Laplace-transform ofCaputo’s definition of fractional derivative.
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If the fractional order is a constant, equation (6) is equivalent to the constant order Caputo definition, thus
enabling a continuous and smooth transition between all integer order calculus operators [25]. Therefore, the
operator in the variable order fractional viscoelasticmodel of this paperwill use theCoimbra definition.

In studying theflowbehavior of alloys, the uniaxial loading condition at the constant strain rate e is usually
used. Therefore, the strain function e e=t t( ) is substituted into the variable order fractional operator of
equation (6) to obtain

Figure 2.Variable order fractional viscoelasticmodel.
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Substituting equation (8) into equation (5) gives
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Finally, by substituting the constant strain rate e e=t t( ) into equation (9), we can obtain afitting equation in
the formof stress-strain relationship as
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3.Modelfittingmethods

In the variable order fractional viscoelasticmodel, the variable order function is crucial in describing the
mechanical property change during deformation. Therefore, before applying the stress-strain relationship
equation of equation (10) to describe the experimental data, the formof the variable order functionmustfirst be
determined. In a previous work [26], the effects of four potential forms of order function, including piecewise,
linear, trigonometric, and exponential, were studied in comparison. The results showed that linear function is
more practical formechanicalmodelling. Besides, the linear order function also directly reflects theway of
constant strain rate loading for the flowbehavior of alloys. As a result, the variable fractional order is assumed to
vary linearly with time in this paper,

a = +t at b 11( ) ( )

The variation of order with strain is also linear under constant strain rate loading conditions,

a e e= +a b 12( ) ( )

Finally, by introducing equation (12) into equation (10), the stress-strain equation for datafitting can bewritten
as
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In equation (13), there are only four parameters, E, θ, a, and b, which can be easily obtained by datafitting.
However, themechanical response of alloys is significantly different before and after the yield point. Therefore,
to reasonably describe the flow stress behaviors of alloys using the variable order fractional constitutivemodel, it
is necessary to divide different stages by the yield point during the fitting procedure.

In this paper, theflow stress behaviorsmainly concerned are strain softening and strain hardening. Taking
strain softening as an example, there is a peak value in the stress-strain curve, after which the flow stress
decreases. However, the peak value is not exactly equal to the yield point because alloys begin to yield before that.
Generally speaking, the yield point of alloys is the intersection of the stress-strain curve and the parallel line of
the elastic stage at the strain of 0.2%, as shown infigure 3. The stress-strain curve is then divided into the elastic
stage and the strain softening stage, where themechanical properties of alloys are significantly different due to
the change inmicrostructure. As a result, when using the variable order fractional constitutivemodel, the stress-
strain curve before and after the yield point should befitted separately.

In order tofit the experimental data with the stress-strain relationship of equation (13), the toolbox ‘Curve
fitting tool’ ofMATLAB software is used, which employs the least squaremethod to obtain themodel
parameters. Furthermore, the values of rootmean squared error (RMSE) and coefficient of determination (R-
square)will also be provided to evaluate the goodness offit of themodel.

In theory, through the abovemodelfittingmethods, the variable order fractionalmodel is able to describe
both the strain softening and strain hardening behaviors, and the variable order function can reflect the variation
ofmechanical property with temperature and strain rate. The validation of the proposedmethods aswell as the
discussion of themodelfitting results will be presented in the next section.
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4. Validation anddiscussion

To validate the effect of the proposedmodel fittingmethods for the variable order fractionalmodel, the
experimental data of alloys, including the strain softening and strain hardening behaviors, are used for data
fitting.

4.1. Strain softening
Niu et al [27] researched the influence of deformation parameters on the strain softening of A356 alloy. They
conducted the compression experiments at temperatures from300 to 500 °Cat varying strain rates. Herewe
selected the experimental data at the temperature of 400 °Cwith strain rates varying from0.1 s−1, 0.01 s−1 to
0.001 s−1, and the data at the strain rate of 0.01 s−1 with temperatures ranging from350 °C, 400 °C and 450 °C.
Using themodelfittingmethod in section 3, the stress-strain curves are fitted in two stages, with stage 1 before
the yield point and stage 2 after that. Themodel parameters, as well as the goodness offit of A356 alloy at the
temperature of 400 °C, are presented in table 1. The comparison ofmodel fitting results and the experimental
data is shown infigure 4. It is clearly seen infigure 4 that the curves obtained by the proposedmodel are in good
agreementwith the experimental data of A356 alloy at the temperature of 400 °C,which has also been reflected
by the values of RMSE andR-square given in table 1.

The same results are achieved for the experimental data of A356 alloy at the strain rate of 0.01 s−1. Themodel
parameters and goodness of fit are shown in table 2, and the datafitting results are plotted infigure 5. Themodel
alsofits well with the experimental data of A356 alloy at the strain rate of 0.01 s−1 with temperatures from350
°C, 400 °C to 450 °C.Generally speaking, the proposed variable order fractionalmodel can accurately describe
the strain softening behavior of A356 alloy at various temperatures and strain rates.

From table 1 and table 2, it can be obtained that the variation ofmaterial constants is in accordance with the
influence of loading conditions onmechanical properties. As the temperature increases or the strain rate
decreases, the elasticmodulus E of A356 alloy decreases while the relaxation time q increases, whichmeans the

Figure 3. Schematic representation of the yield point of alloys.

Table 1.Model parameters and goodness offit for A356 alloy at the temperature of
400 °C.

Stage 1 Stage 2

e (1 s)−1 0.1 0.01 0.001 0.1 0.01 0.001

E (MPa) 2990 1915 1469 29.53 11.51 6.06

θ (s) 0.137 1.78 23.06 30.67 474.4 6867

a 3.3 3.5 4.6 −6.3 −0.4 −0.38

b 0.69 0.75 0.8 0.88 0.94 0.98

RMSE 2.814 2.066 2.605 0.2232 0.2702 0.2515

R2 0.9357 0.9405 0.9573 0.9961 0.992 0.9968
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strength of A356 alloy decreases under these conditions. Furthermore, asmentioned before, the fractional order
function in themodel can reveal the change ofmechanical property, so the rule of the fractional order varying
with strain should be further discussed.

The variable fractional order versus strain curves for the strain softening of A356 alloy at the temperature of
400 °Cand the strain rate of 0.01 s−1 are plotted infigure 6 andfigure 7, respectively. In terms of the overall
values of the curves, the fractional order increases with increasing temperature and decreasing strain rate,
indicating that the strength of A356 alloy decreases in these cases, which is consistent with the influence on the

Figure 4.Themodel fitting results and the experimental data of A356 alloy for strain softening at the temperature of 400 °C.

Figure 5.Themodel fitting results and the experimental data of A356 alloy for strain softening at the strain rate of 0.01 s−1.

Table 2.Model parameters and goodness of fit for A356 alloy at the strain rate of
0.01 s−1.

Stage 1 Stage 2

T ( °C) 350 400 450 350 400 450

E (MPa) 7237 1915 1445 34.8 11.51 6.623

θ (s) 0.5 1.78 1.8 291.2 474.4 504.5

a 4.48 3.5 5 −0.66 −0.4 −0.36

b 0.61 0.75 0.76 0.89 0.94 0.97

RMSE 2.407 2.066 1.592 0.2953 0.2702 0.1591

R2 0.9858 0.9405 0.9546 0.9953 0.992 0.996
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material constants. The range of values is restricted between 0 and 1, which is in accordancewith the definition
of the fractional description of viscoelasticity.Moreover, it can be found in bothfigures that the fractional order
increases before the yield point and continuously decreases in the strain softening stage. From the evolution of
mechanical property, the smaller ordermeans thematerial is closer to the fluid. This indicates that the elastic
property of A356 alloyweakens until the yield point. Thenwith the strain softening stage developing, its

Figure 6.The variable fractional order curves for the strain softening of A356 alloy at the temperature of 400 °C.The variable fractional
order curves for the strain softening of A356 alloy at the strain rate of 0.01 s−1.

Figure 7.Themodel fitting results and the experimental data of Cu-Cr-Mg alloy for strain hardening at the strain rate of 1 s−1.
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hardness gradually increases, and therefore the rate of stress reduction decreases. It can be concluded that the
variable fractional order function vividly reveals themechanical property evolution of A356 alloy during strain
softening behavior.

4.2. Strain hardening
For alloys experiencing strain hardening behavior,Wang et al [28] performed isothermal compression tests on
several kinds of alloys at various temperatures and strain rates. The experimental data of Cu-Cr-Mg alloy are
chosen for datafitting, including three different temperatures of 750 °C, 800 °C, and 850 °C at the strain rate
of 1 s−1. Themodel parameters and goodness offit are listed in table 3. Similarly, the elasticmodulus E is
decreasing, and the relaxation time q is increasingwith the temperature increases, whichmeans the strength of
Cu-Cr-Mg alloy also reduces in this situation. The comparison between themodel fitting results and the
experimental data are presented infigure 7. It is still noticeable that the presentmodel can give an accurate
description of the strain hardening behavior of Cu-Cr-Mg alloy.

In addition, the variable fractional order versus strain curves are plotted infigure 8. The overall values of the
fractional order functions follow the same rule as A356 alloy, which increases with increasing temperature
within the range of 0 and 1. This suggests that the strength of Cu-Cr-Mg alloy is lower at higher temperatures,
which alsomeets the rule of thematerial constants. However, the variation of the fractional orderwith strain is
different from that of strain softening behavior. Although the fractional order curves are rising before the yield
point, after yielding, they do not decrease as for strain softening behavior, but still rise linearly. This is due to the
different trends in the evolution ofmechanical properties of alloys during strain softening and strain hardening.
During strain softening, the rate of stress reduction decreases, indicating that the hardness of alloys increases
with strain, corresponding to the fractional order close to zero.While in strain hardening, the rate of stress
increase decreases, indicating that the hardness decreases with strain and the corresponding fractional order
increases toward 1. Therefore, we can say that the evolution ofmechanical property of Cu-Cr-Mg alloy during
strain hardening behavior has also been effectively described by the variable fractional order functions.

All in all, it is demonstrated that the variable order fractionalmodel can accurately describe the flow stress
behaviors of alloys by comparing the variable order fractionalmodel with the experimental data of both strain

Figure 8.The variable fractional order curves for the strain hardening of Cu-Cr-Mg alloy at the strain rate of 1 s−1.

Table 3.Model parameters and goodness offit for Cu-Cr-Mg alloy at the strain rate of
1 s−1.

Stage 1 Stage 2

T (°C) 750 800 850 750 800 850

E (MPa) 3705 1615 188.6 112.3 45 25.1

θ (s) 0.01 0.033 0.249 1.034 2.333 3.329

a 4.884 5.738 6.85 0.117 0.12 0.199

b 0.461 0.634 0.78 0.806 0.835 0.85

RMSE 1.837 1.283 0.7765 0.9706 0.8881 0.713

R2 0.9971 0.9992 0.9986 0.9969 0.9958 0.9969
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softening and strain hardening behaviors. The laws of the fractional order functions in themodel can intuitively
reveal the change ofmechanical properties of alloys during the deformation process.

5. Conclusion

In the presented study, a variable order fractional constitutivemodel has been proposed for theflow stress
behaviors of alloys during the hotworking process. By assuming that the fractional order is linearly varyingwith
time, the proposedmodel is able to describe both the strain softening and strain hardening behaviors. The
effectiveness of the proposedmethod is validated by comparing themodel fitting results with the experimental
data of alloys under various temperatures and strain rates. The stress-strain curves of alloys are fitted separately
before and after the yield point, which is the intersection of the stress-strain curve and the parallel line of the
elastic stage at the strain of 0.2%. The conclusions obtained regarding the laws of the fractional order are as
follows:

(1) The overall values of the fractional order functions increase with increasing temperature or decreasing strain
rate, which suggests that the strength of alloys is lower at higher temperatures or smaller strain rates.

(2) Before the yield point, the fractional order is a linearly increasing function for both the strain softening and
strain hardening behaviors. Thismeans the elastic property of alloys weakens until the yield point.

(3) After the yield point, the fractional order decreases for strain softening behavior, and increases for strain
hardening behavior. This indicates that the hardness of alloys increases with strain during strain softening
while decreasingwith strain for strain hardening.

In summary, it is demonstrated that the variable order fractionalmodel can accurately describe the flow
stress behaviors of alloys, and the variation of the fractional order is able to reflect the evolution ofmechanical
property during the deformation process.
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